标准差怎么算的详解
- 时间:2023年06月09日 11:30:02 来源:魔法猪系统重装大师官网 人气:14327
标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同;原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。我们一起来学习一下标准差怎么算吧。
工具/原料:
系统版本:windows10系统
品牌型号:联想小新air14
标准差详解及示例:
简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解。因此如果测量值都落在一定数值范围之外,那么可以推论预测值是不合理的。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去的回报平均数值,即回报较不稳定,风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较低。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.160分(此数据使用的是总体标准差),说明A组学生之间的差距要比B组学生之间的差距大得多。若n个数据为总体,则求总体标准差,标准差公式根号内除以n;若n个数据为样本,则求样本标准差,标准差公式根号内除以(n-1)。因为我们接触的数据多为样本,所以一般情况下根号内除以(n-1)。公式意义所有数(个数为n)记为一个数组[n]。将数组的所有数求和后除以n得到算术平均值。数组的所有数分别减去平均值,得到的n个差值分别取平方,再将得到的所有平方数求和,然后除以数的个数或个数减一(若所求为总体标准差则除以n,若所求为样本标准差则除以(n-1)),最后把得到的商取算术平方根,就是取1/2次方,得到的结果就是这组数(n个数据)的标准差。
标准差:
由于方差是数据的平方,一般与检测值本身相差太大,人们难以直观地衡量,所以常用方差开根号(取算术平方根)换算回来。这就是我们要说的标准差(SD)。在统计学中,样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
标准差怎么算:
1.平均数是数据的平均值,把数据加起来然后除以数据个数就可以得到。
2.方差是数据偏离平均数的程度。得到方差首先要计算单个数据和平均数的差,然后平方,再求平均数。
3.最后方差开方就可以得到标准差。
总结:
标准差,也称均方差,是各数据偏离平均数的距离的平均数。标准差被用来评估价格可能的变化或波动程度。接下来让我们一起学习计算标准差吧。
标准差怎么算,标准差,标准差的详细介绍